In prepositional calculus , the property is new arrangement of simple statements in a clause or a term 返口到p中來看,這種“特殊性”實質(zhì)上是對p中于句或者合取式中的原子命題的一種重新排列。
In 1996 , professor wang guojun built formal deductive system l * of fuzzy prepositional calculus , then in the frame of system l * , constructed the logical base for fuzfcy reasoning rules from sematics 王國俊教授于1996年建立了模糊命題演算的形式系統(tǒng)l ~ * ,之后在系統(tǒng)l ~ *的框架中,從語義上為模糊推理規(guī)則構(gòu)建了邏輯基礎。
We can construct a " numerals system " , and there is isomorphism of the numerals system into prepositional calculus , so , for a proof of prepositional calculus , by isomorphism , we can find a " numerals proof of the numerals system ) ,同構(gòu)保證p中的命題演繹一一對應于n中的一個“數(shù)字演繹” ,同時,為了使用方便,應該使數(shù)字系統(tǒng)( ? )的表示過程盡可能簡單。
The second part builds a new algebra syetem rl , which in the definition of bl - algebra gets rid of the stronger condition and studies the properties of rl - algebra . in the same time , using rl - algebra as the true - value field this paper builds a more extentively formal deductive system of fuzzy prepositional calculus - - - - - - logic system rl . obtains a series of theorems , and studies the completeness of rl logic 第二部分:在以bl邏輯為背景的bl代數(shù)的定義中去掉限制性較強的條件a b = a ( a b ) ,建立了一種新的代數(shù)系統(tǒng)rl ,并進一步研究了rl代數(shù)類的性質(zhì);以rl代數(shù)為賦值域建立了一種更為廣泛的模糊命題演算的形式系統(tǒng)? ?剩余格值邏輯系統(tǒng)rl ,得到了一系列定理,同時研究了邏輯系統(tǒng)rl的(弱)完備性